
Contents lists available at ScienceDirect

Ultrasonics

journal homepage: www.elsevier.com/locate/ultras

Lung mass density analysis using deep neural network and lung ultrasound
surface wave elastography

Boran Zhou, Xiaoming Zhang⁎

Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA

A R T I C L E I N F O

Keywords:
Deep neural network
Lung density
Lung ultrasound surface wave elastography
Lung disease

A B S T R A C T

Lung mass density is directly associated with lung pathology. Computed Tomography (CT) evaluates lung pa-
thology using the Hounsfield unit (HU) but not lung density directly. We have developed a lung ultrasound
surface wave elastography (LUSWE) technique to measure the surface wave speed of superficial lung tissue. The
objective of this study was to develop a method for analyzing lung mass density of superficial lung tissue using a
deep neural network (DNN) and synthetic data of wave speed measurements with LUSWE. The synthetic training
dataset of surface wave speed, excitation frequency, lung mass density, and viscoelasticity from LUSWE (788,000
in total) was used to train the DNN model. The DNN was composed of 3 hidden layers of 1024 neurons for each
layer and trained for 10 epochs with a batch size of 4096 and a learning rate of 0.001 with three types of
optimizers. The test dataset (4000) of wave speeds at three excitation frequencies (100, 150, and 200 Hz) and
shear elasticity of superficial lung tissue was used to predict the lung density and evaluate its accuracy compared
with predefined lung mass densities. This technique was then validated on a sponge phantom experiment. The
obtained results showed that predictions matched well with test dataset (validation accuracy is 0.992) and
experimental data in the sponge phantom experiment. This method may be useful to analyze lung mass density
by using the DNN model together with the surface wave speed and lung stiffness measurements.

1. Introduction

Interstitial lung disease (ILD), manifested as fibrotic and stiffened
lung parenchyma, can result in symptoms such as dyspnea and may
lead to respiratory failure [1]. ILD usually affects the peripheral, sub-
pleural regions of the lung [2,3]. ILD can be induced by autoimmune
diseases, genetic abnormalities, and long-term exposures to hazardous
materials yet its cause is mostly unknown and lung manifestations are
characterized as idiopathic interstitial pneumonia.

It has been shown that lung mass is not uniformly distributed in the
lung, with greater density in the lower lobes. Moreover, lung mass in-
creases with the degree of fibrosis [4,5]. Currently, there are no clinical
imaging modalities to directly measure lung mass density. High-re-
solution computed tomography (HRCT) is the clinical standard for di-
agnosing lung fibrosis given the specific radiation attenuation proper-
ties of the lung tissue [6,7]. Numerous studies have shown that the
extent of emphysema measured by pathology scores in resected lung
tissue is well correlated with lung density values obtained from pre-
operative CT of the lung [8,9]. Two objective measures of CT lung
density, so-called densitometric parameters (the percentile density and
relative area of emphysema), were used to correlate emphysema on CT

to the extent of emphysema in the corresponding resected lobes. CT
images have been used to quantify lung density to some extent [10–12].
Computed tomography (CT) is the major clinical imaging modality for
assessing various lung diseases. The mechanism of CT is based on the
changes of tissue mass density but the CT system uses the Hounsfield
unit (HU) but not lung density to image the lung. Yet, it exposes pa-
tients to a high dose of radiation.

Data-driven clinical predictions are not new in medical practice.
Combined with modern machine learning, clinical data enable us to
generate prediction outcomes for different clinical applications.
Machine learning techniques are particularly suitable for predictions
based on existing data. These approaches are able to discover and
identify patterns and relationships between them from complex data-
sets, while they are able to effectively predict future outcomes [13,14].
In supervised learning, a labeled set of training data is used to estimate
or map the input to the desired output. In the case of regression pro-
blems, a learning function maps the data into a real-valued variable. For
each new sample, the value of the predictive variable can be estimated
[15].

It is well known that lung tissue is normally filled with air and the
difference in acoustic impedance between air and tissue is large,
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resulting that most of the energy of the ultrasound wave is reflected
from the lung surface. We have recently developed a lung ultrasound
surface wave elastography technique (LUSWE) for measuring the sur-
face wave speeds of superficial lung tissue [16–18]. The estimation of
viscoelasticity of lung tissue is also dependent on mass density of lung
tissue. However, the data of mass density of lung is very limited,
especially when the lung tissue is diseased (such as ILD) or at various
pulmonary pressures (such as at total lung volume). The purpose of this
study is to develop a method to analyze the lung density using a deep
neural network algorithm and the LUSWE measurements.

2. Materials and methods

2.1. Synthetic dataset

In order to generate the database for training the DNN model,
analytical simulations were carried out for different sets of material
parameters.

The surface wave speed model is used,
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where μ1, μ2 and ρ are shear elasticity, shear viscosity, and mass density
of the material, while ω and cs are the excitation frequency and corre-
sponding surface wave speed [19–21]. Lung density of healthy subjects
obtained via X-ray was reported to be 0.24 g/cm3. For the patients with
pulmonary congestion and edema, the lung density was 0.33–0.62 g/
cm3 [22]. We could not find lung density data for ILD patients or at the
total lung volume. Young’s modulus of normal lung tissue was reported
to be 1–5 kPa [23]. Fibrotic lung tissue was reported 20 times stiffer
than normal lung tissues [24]. The ranges of material parameters were:
μ1 =(2 kPa, 14 kPa), μ2 =(2 Pa·s, 17 Pa·s) [25], ρ =(240 kg/m3,
620 kg/m3). A certain number of random numbers in a normal dis-
tribution were generated within the range of material parameter (20 for
μ1, 20 for μ2 and 3200 for ρ). For each set of material properties
(μ μ ρ, and1 2 ), three excitation frequencies (100, 150, and 200 Hz)
were used to generate the wave speeds at corresponding frequencies.
792,000 data sets were obtained in total. The dataset is divided into
three parts: training data (630,400), validation data (157,600), testing
data (4000). The features available for us to use are the shear wave
speeds of lung tissue at three excitation frequencies and shear elasticity
of lung tissue. The only label is the mass density of superficial lung
tissue.

2.2. Deep neural network model

The synthetic dataset is used to train a DNN model. The proposed
architecture is composed of 5 fully-connected layers as described in
Fig. 1. The DNN model trained by back propagation consists of 4 neu-
rons in the input layer, 1024 neurons in each of three hidden layers, and
1 neuron in the output layer. The surface wave speeds at three fre-
quencies and shear elasticity (c c c μ, , ands s s100 150 200 1) of lung tissue are
imported as input layer. For our Deep Neural Network, we used the
‘DNNRegressor’ with rectified linear activation unit (ReLU). To reduce
overfitting, regularizer L2 was used for each fully-connected layer [26].
The training of DNN is composed of two parts: a training objective and
an optimization algorithm to minimize this objective function. In this
study, we evaluated the performance of 3 optimizers, Adam, Stochastic
gradient descent (SGD) and AdaGrad, to minimize the mean square
error (MSE) [27,28]. The MSE represents the dissimilarity of the ap-
proximated output distribution from the true distribution of labels.
Learning rate was 0.001. The neuron in the output layer corresponds to
the predicted lung mass density and is compared with the predefined
lung mass density (TargetsData). The evaluation of performance of
different optimizers was based on a train-validation-test scheme. The

actual training of the approach was carried out on the training dataset,
while the validation dataset (cross-validation ratio is 0.2) was used for
fine tuning of hyper-parameters; the overall performance of each op-
timizer was evaluated on the test dataset [29].

The trainable weights are initialized with the Xavier initialization
[30]. The weight updates are performed in mini-batches and the
number of samples per batch was set to 4096. The training ends when
the network does not significantly improve its performance on the va-
lidation set for a predefined number of epochs. This number is set to 10
and the performance is evaluated in terms of loss and accuracy [31].
Loss is mean square error, which is dissimilarity of the approximated
output distribution from the true distribution of labels.
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Yi is the training data, ̂Yi is the prediction from the model, Y is the mean
value of training dataset. An improvement is considered significant if
the relative increase in performance is at least 0.5%.

The DNN was implemented using the Python API of TensorFlow and
TFLearn framework. Graph visualization of data flow for the network
was shown in Fig. 1.

2.3. LUSWE on sponge phantom

A cellulose sponge (Ocelo utility sponge, 3M, St. Paul, MN, USA)
was cut into a 3.0 cm×1.9 cm×8.0 cm rectangular piece. The volume
and weight of the dry sponge were measured to calculate its density.
The sponge was put into a customized metal holder with a fixed inner
width of 2.0 cm (Fig. 2). It was then injected with tap water at an in-
terval of 3ml from 0 to 30ml and the corresponding mass density of
sponge was calculated. After each injection, a sinusoidal signal of 0.1 s
duration was generated using a function generator (33120A, Agilent
Technologies, Inc., Santa Clara, CA, USA) and amplified with amplifier
(Pyle PCA4 stereo power amplifier, Pyle audio Inc., Brooklyn, NY, USA)

Fig. 1. Schematic of a deep neural network.
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at five frequencies 100, 150, 200, 250 and 300 Hz [32]. This signal
drives a mechanical shaker (FG-142, Labworks Inc., Costa Mesa, CA,
USA) which applied a harmonic vibration on the sponge phantom
surface. A Verasonics Vantage system with a L11-5v probe (6.4 MHZ)
was used to capture the motion of the sponge. Each measurement was
repeated three times at each injection and frequency. The surface wave
speed of the sponge was analyzed by the change in wave phase with
distance. For the details of procedures for measuring the surface wave
speed of the sponge phantom, readers are encouraged to read reference
[18,19]. The viscoelasticity of the sponge at each injection was calcu-
lated using the Voigt model [33]. Given the surface wave speed at
different excitation frequency and viscoelasticity of the sponge at dif-
ferent level of water injection, the mass density of the sponge was
predicted using the trained DNN model. It was then compared with the
measured mass density of the sponge phantom at different level of
water injection.

3. Results

The convergence of the three different optimizers is demonstrated in
terms of the validation loss over the epochs in Fig. 3(a). The loss drops
dramatically in the first few steps for Adam yet soon stops. For SGD and
AdaGrad, the loss gradually drops toward the end. The validation ac-
curacy of model was plotted in Fig. 3(b). Both SGD and AdaGrad gra-
dually approach 0.86 with AdaGrad converging faster than SGD while

Adam gradually approaches 1 from approximately 0.7. MSE and accu-
racy of the validation dataset of three different optimizers were shown
in Table 1. Minimizing the MSE by the Adam optimizer yielded the best
results in a small number of iterations. AdaGrad follows with about 5%
lower performance and SGD with even a higher drop in performance of
8%. Predefined and predicted lung densities of different optimizers for
the test dataset were shown in Table 2. It showed that the prediction
matched well with the predefined densities using Adam yet not good
with SGD or AdaGrad.

The predicted density from the DNN matched well with the mea-
sured density of the sponge phantom (Table 3). The validation accuracy
is 0.92.

4. Discussions

The aim of this study was to develop a deep neural network (DNN)
model to predict the lung density for ILD patients based on measure-
ments of wave speeds obtained from LUSWE. Ranges of viscoelasticity
and densities of lung tissue covering both healthy controls and ILD
patients were predefined to generate synthetic data in terms of wave
speeds of lung tissue at three vibration frequencies to train the DNN
model. Then, the DNN model was used to predict lung density based on
wave speeds of lung tissue at three frequencies and shear elasticity of
lung tissue. This model was also validated using a LUSWE on a sponge
phantom. The obtained results show that DNN can be used to predict
lung mass density with high accuracy.

Ultrasonography is not widely used in clinical practice for lung
evaluation because lung tissue is filled with air and most energy of the
ultrasound wave is reflected from the lung surface. However, lung ul-
trasonography can be used for diagnosing various thoracic diseases and
especially useful in the emergency and critical care settings [34–36]. In

shaker 

probe 

sponge Gel pad 

Fig. 2. Experimental setup of the LUSWE on the sponge phantom.

Fig. 3. Comparison of the convergence speed between three optimizers. Loss (a) and accuracy (b) curves during the supervised learning of the proposed system.

Table 1
Comparison in metrics of the proposed technique with different optimizers.

Metrics Adam SGD AdaGrad

MSE Loss 8 26,062 26,422
Val_acc 0.992 0.856 0.862

Table 2
The comparison of different optimizers in the test dataset between predefined
and predicted densities of lung tissue.

Predefined density
(kg/m3)

378 491 544 479 495 548 463 275 249 439

Adam 375 490 544 478 494 548 461 274 249 437
SGD 507 582 578 583 581 577 448 477 483 451
AdaGrad 511 577 573 579 577 573 456 488 496 459
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order to noninvasively measure lung viscoelastic property, we have
developed an ultrasound-based LUSWE technique to quantify super-
ficial lung tissue stiffness [37,38]. In LUSWE, a small, local 0.1 s har-
monic vibration is generated by the indenter of a handheld shaker on
the skin of the subject at three frequencies (100, 150, and 200 Hz). The
ultrasound probe is placed approximately 5mm away from the indenter
in the same intercostal space to measure the generated surface wave
propagation on the lung surface in that intercostal space. The wave
propagation speed of superficial lung tissue is determined by the change
in wave phase with distance.

At first, we used linear regression to identify lung mass density
based on surface wave speeds of lung tissue at different excitation
frequencies, yet got pretty poor results (data not shown). The DNN
Regressor is a fully connected feed-forward model that is connected
with a rectified linear activation unit (ReLU) [39]. It has been shown
that activation function greatly affects the speed of convergence. The
use of the ReLU function has been proven to be able to accelerate the
training process compared with the sigmoid alternative. SGD is a sto-
chastic approximation of the gradient descent optimization and itera-
tive method for minimizing an objective function that is written as a
sum of differentiable functions. AdaGrad is a modified stochastic gra-
dient descent with per-parameter learning rate. It works well with
sparse gradients. However, for noisy objectives, higher-order optimi-
zation is not suited. Adam is a method for efficient stochastic optimi-
zation that only requires first-order gradients with little memory re-
quirements. It computes individual adaptive learning rates for different
parameters from estimates of first and second moments of the gradients.
Adam adapts learning rates for different layers instead of manually
hand picking. Adam employs a preconditioner that adapts to the geo-
metry of the data. Adam adapts the advantage of AdaGrad for sparse
gradients. Moreover, its magnitudes of parameter updates are invariant
to rescaling of the gradient, its step sizes are approximately bounded by
the step size hyper-parameter, it does not require a stationary objective,
and it performs a form of step size annealing [27,40].

Lung CT scanning has widely been used to quantify lung density for
emphysema [8]. Parenchyma of patients with pulmonary fibrosis was
imaged with HRCT to evaluate lung density based on gray scale his-
togram [10]. HRCT is essential in quantitative analysis of ILD in terms
of regional volumetric quantities [41]. However, HRCT substantially
increases radiation exposure for patients and the potential for frequency
HRCT use is limited by its expense. In future studies, HRCT could be
used to validate the prediction of lung density with DNN. Lung density
measurements via CT scanning was well correlated with pulmonary
function tests [11]. However, CT or HRCT does not directly measure
lung density. We could extend this DNN model together with CT and
pulmonary function test (PFT) for analyzing patient’s LUSWE data. PFT
can provide the global lung stiffness and LUSWE can provide local re-
gion lung stiffness measurements in various intercostal spaces. The
novelty of this study was to develop a method for analyzing the lung
mass density using DNN and measurements from LUSWE. In future
studies, we will evaluate novel DNN techniques and their applications
to our problems. We will increase the number of layers of neural net-
work and use deep-residual-networks to improve the accuracy of pre-
diction.

The wave speed on the lung surface was determined by analyzing
ultrasound data directly from lung surface. Hence, the wave speed
measurement is local and independent of the location of excitation. The

wave speeds of superficial lung tissue in LUSWE are obtained at total
lung capacity when a subject is taking a deep breath and holds for a few
seconds. The lung density is also dependent on the pulmonary pressure.
In future studies, in vitro studies can be conducted on porcine lungs to
investigate the relationship between lung density and pulmonary
pressure based on LUSWE and DNN.

Most soft tissues are incompressible and their mass densities are
close to 1000 kg/m3. Lung parenchyma is a porous material filled with
air and with a void ratio of approximately 0.7 [42,43]. The range of
lung mass between 240 kg/m3 and 620 kg/m3 was studied in this re-
search based on the available data from literature. Sponge phantom has
been shown to have similar microstructure as lung parenchyma
[44,45]. With its availability, relevant phantom models for a systemic
study of induced disease states, such as pulmonary edema, can be
generated. Pulmonary edema is a fundamental feature of congestive
heart failure and inflammatory conditions such as acute respiratory
distress syndrome [46]. The presence of extravascular lung water
(EVLW) predicts worse prognosis in critically ill patients [47] and in-
creased risk of death or heart failure readmission [48]. The lung density
should increase for lung edema. In future, we plan to evaluate the DNN
model for patients with pulmonary edema.

5. Conclusion

In this work, we propose to use a deep neural network model for
lung mass density prediction of superficial lung tissue based on LUSWE.
The synthetic data was obtained by calculating surface wave speeds of
superficial lung tissue at different excitation frequencies given viscoe-
lasticity and density of lung tissue. The training was performed by
minimizing the mean square error of the training set and validation set
with the different optimizers. The proposed method is evaluated on the
synthetic dataset and validated on the sponge phantom experiment. The
DNN model is able to predict lung tissue density with high accuracy
using the Adam optimizer.
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